

Managing the ATLAS Grid through Harvester 1

Fernando Harald Barreiro Megino1,*, Aleksandr Alekseev2, Frank Berghaus3, David 2
Cameron4, Kaushik De1, Andrej Filipcic5, Ivan Glushkov1, FaHui Lin1, Tadashi Maeno6, 3
and Nicolo Magini1 on behalf of the ATLAS Collaboration 4
1University of Texas at Arlington, United States of America 5
2Tomsk Polytechnic University, Russia 6
3University of Victoria, Canada 7
4University of Oslo, Norway 8
5Jozef Stefan Institute, Slovenia 9
6Brookhaven National Laboratory, United States of America 10
7Iowa State University, United States of America 11

Abstract. ATLAS Computing Management has identified the migration 12
of all computing resources to Harvester, PanDA’s new workload 13
submission engine, as a critical milestone for Run 3 and 4. This 14
contribution will focus on the Grid migration to Harvester. We have built a 15
redundant architecture based on CERN IT’s common offerings (e.g. 16
Openstack Virtual Machines and Database on Demand) to run the 17
necessary Harvester and HTCondor services, capable of sustaining the load 18
of O(1M) workers on the grid per day. We have reviewed the ATLAS Grid 19
region by region and moved as much possible away from blind worker 20
submission, where multiple queues (e.g. single core, multi core, high 21
memory) compete for resources on a site. Instead we have migrated 22
towards more intelligent models that use information and priorities from 23
the central PanDA workload management system and stream the right 24
number of workers of each category to a unified queue while keeping late 25
binding to the jobs. We will also describe our enhanced monitoring and 26
analytics framework. Worker and job information is synchronized with 27
minimal delays to a CERN IT provided ElasticSearch repository, where we 28
can interact with dashboards to follow submission progress, discover site 29
issues (e.g. broken Compute Elements) or spot empty workers. The result 30
is a much more efficient usage of the Grid resources with smart, built-in 31
monitoring of resources. 32

 33

 34

* Corresponding author: barreiro [at] uta [dot] edu

1 Introduction 35
The Worldwide LHC Computing Grid (WLCG) [1] is a highly heterogeneous federation of 36
computing sites with different middleware and increasingly special resources, such as 37
Cloud or High Performance Computing (HPC) resources. PanDA [2] is the Workload 38
Management System for ATLAS [3], managing all production and user jobs across the 39
WLCG centers associated with the experiment. In order to exploit resources, PanDA is 40
based on the Pilot paradigm [4], where Pilot jobs are submitted to the batch systems at sites. 41
The Pilots retrieve the real payload from PanDA server and execute it. 42

Over the years numerous Pilot submission systems have been developed, frequently 43
specializing on a certain subset of resources and having independent code bases. The 44
Harvester project was born as an attempt to provide a universal Pilot submission system. At 45
the same time, in the case of Grid resources, some improvements were needed to increase 46
the stability and usage efficiency through a tighter integration with the PanDA Workload 47
Management System allowing a more informed decision taking. 48

This contribution will focus on core Harvester design decisions and other significant 49
aspects like new submission modes and monitoring. We will also show the process and 50
results of migrating all Grid resources to Harvester. 51

2 Harvester design decisions 52

2.1 Lightweight vs High Performance execution modes 53
In order to be a universal service for any type of resource, Harvester needs to provide 54
certain flexibility in terms of resource consumption and dependencies. In the case of HPCs, 55
Harvester frequently needs to run on edge nodes with strict restrictions on installation and 56
memory/CPU footprint of the application. In this case Harvester provides a lightweight 57
mode, using a SQLite database and limiting the number of internally managed threads. 58

On the contrary for the Grid, central Harvester instances manage very large, costly 59
infrastructures that need to be kept fully utilized. There are no important installation 60
restrictions and it is preferable to host high performance services. In this case, Harvester 61
typically uses a MySQL/MariaDB database and multiple Harvester processes can be started 62
through frameworks like uWSGI [5]. 63

2.2 Fast integration of new resources 64
To reduce the lead time until a new resource is exploited successfully, the Harvester code 65
follows a plug-in approach: the code is split into a common core and a set of specific plug-66
ins that can be configured for each resource. Typically, new resources only require the 67
implementation of resource-specific libraries for submission, monitoring and cleaning up 68
workers that have finished. For most of the cases, these are python modules with lengths of 69
a few hundred lines of code. 70

Up to date, plug-ins have been developed for HTCondor [6], ARC CE [7], Google 71
Compute Engine [8], Kubernetes [9], SAGA [10], PBS [11], Cobalt [12] and Slurm [13]. 72

Data management plugins can be also developed to handle input and output files. This 73
is often required for HPCs, where the worker nodes have no external connectivity. However 74
this is generally not required for the Grid, since the Pilot handles the data management. 75

 76
 77

2.3 Queue unification 78
ATLAS submits Pilots specifying the number of cores and memory for the jobs. In 79

the past, sites provided multiple separate queues per job type: 80
• Analysis: usually single core payloads running with a non-production proxy security 81

role 82
• Production: several different payloads summarized in Table 1. 83

Table 1. Requirements for the various production workloads 84
 CPUs Memory

Single core 1 2 GB

Multi core Depends on site, usually 8 2 GB/core

Single core, high memory 1 Depends on site, >2 GB

Multi core, high memory Depends on site, usually 8 Depends on site, >2 GB/core

 85
An average site for ATLAS would have an Analysis queue, a single core and a multi-core 86
production queue. Larger sites would also provide high memory queues. Pilots would be 87
submitted to these queues independently, causing random competition for the slots and 88
making it impossible to establish any control over the ratios. 89

In order to follow the Global Shares [14] priorities of ATLAS, it is more desirable to 90
unify all queues at a site into one single queue that can accept Pilots with different sizes. 91
These unified queues can be managed using either the Pull mode or the new Pull UPS mode 92
(see next subsection). 93

2.4 Submission modes supported by Harvester 94
Harvester supports the classical push and pull workflows, and has extended the pull 95
workflow for unified queues as follows: 96
• Push (early binding): the worker submitted to the batch queue is already assigned to a 97

particular job and requests the CPU, memory, and potentially other requirements, of 98
the specific job. The push workflow works natively with unified queues. The 99
disadvantage is the early binding: once the worker is submitted, you can’t control the 100
queue time. If the queue time is long, a high priority job is stuck in the queue. Also, 101
during the queueing time, a more important job might have appeared and needs to wait 102
until the queue of previously submitted jobs has cleared. 103

• Pull (late binding): To circumvent the drawbacks of the push workflow, the pull 104
workflow submits workers without any pre-assigned job. The advantage is that the 105
WMS can choose the most important job right at the time the worker starts running. 106
However, all workers submitted to the queue are the same and thus this mode does not 107
support natively on unified queues. A dumb pilot submitter and multiple queues with 108
different requirements on the same site causes competition between them and ATLAS 109
can’t control the ratio of workers across the queues. 110

• Pull UPS (Unified Pilot Streaming): This mode is an extension of the traditional pull 111
mode to support unified queues. All types of jobs are queued together in the same 112
queue and it’s the WMS system deciding the fraction of workers of each type to 113
submit, depending on the global priorities. The WMS decision is published to 114
Harvester as a command. 115

 116
 117

 118

3 Harvester monitoring 119

3.1 Worker monitoring 120
Harvester reports the worker information up to the WMS, in our case PanDA. PanDA 121
stores the worker information from the different Harvesters in one combined central Oracle 122
table and also mirrors it to an ElasticSearch repository managed by CERN IT [15]. Our 123
monitoring of choice follows the general trend to build dashboards on top of ElasticSearch, 124
because of its speed and flexibility. We have built dashboards in Kibana for expert users 125
and more user-friendly dashboards in Grafana for widespread use by site admins and 126
shifters. 127

The dashboards allow the user to interact with the Harvester data at a detailed worker 128
level and at high level overviews: 129
• The dashboards show a table with detailed worker information, which provide links to 130

the logs and to the job submission file, to provide easy debugging of worker failures. 131
• The dashboards also provide several plots to see the submission evolution broken down 132

by different criteria (Harvester instance, resource type, state, etc.). There are also plots 133
to see the worker distribution across the Computing Elements of a site. 134

3.2 Service monitoring 135
Our service monitoring collects important information about the Harvester instances: 136

• Disk, CPU and memory usage 137
• Worker submission, update and completion rates 138
These metrics allow to easily identify when an instance is in trouble or misbehaving. 139

We have an alerting system in place that sends a mail to the central Harvester team in case 140
a metric has exceeded a threshold. The alerting system has proven very useful and warns us 141
quickly about issues. These alerting systems are critical in times of low operational 142
manpower and shifters in ATLAS. 143

3.2 Site monitoring 144
We are also implementing monitoring to identify broken sites. There are views in place 145
grouping broken sites and broken Computing Elements, based on high ratios of workers in 146
bad states (failed or cancelled submission). We show also the error messages happening on 147
those sites. 148

We are working on a monitoring to identify inactive sites, where the submission rate 149
is lower than what would be expected. There can be different reasons for this, including 150
misbehavior of Harvester submission rate calculation for the site. In the future we would 151
like to automate actions, like issuing a reset of the worker submission calculation or 152
submitting tickets to the site. 153

4 Migration of the Grid to Harvester 154

4.1 Central infrastructure 155
 156
We have setup a central high-performance Harvester infrastructure for the whole Grid 157
migration. It is based on CERN IT provided services. The databases are hosted by the DB 158
on Demand [16] project, while the servers are virtual machines from the OpenStack service. 159
We have distributed the Grid sites across three Harvester instances: 160

• Harvester A: US, CERN Tier 0, France, Russia, Canada, Netherlands 161
• Harvester B: CERN, Germany, UK, Taiwan, Italy, Spain 162
• Harvester ACTA: ARC CE sites 163
Each instance consists of two active machines and one shared database for each 164

instance. The two machines provide redundancy and are in different zones of the CERN 165
computing center. If one machine is unavailable, the other machine can take over the full 166
load. 167
Non-ARC computing elements rely on HTCondor as interface. There are five load-168
balanced HTCondor machines for the whole grid. 169

 170

Fig. 1. Harvester infrastructure overview 171

4.2 Migration process 172
The whole grid was migrated June 2018 to March 2019. During the migration process we 173
watched stability and scaling of the services, improved the efficiency of the HTCondor 174
interfaces, simplified the configuration of queues through the ATLAS Grid Information 175
System (AGIS) [2017] and improved some interactions with the database. 176

 177

Fig. 2. Overview of the Grid migration progress to Harvester, in number of workers. This histogram 178
is extracted from our Harvester worker monitoring. 179

During the first period we migrated production queues to Harvester. Although 180
production jobs occupy the better part of the grid slots, they are rather easy to handle from a 181
Harvester load point of view: they run for multiple hours and typically occupy multiple 182
cores. During the migration a major effort was devoted to unify production queues to the 183
pull UPS mode explained in section 2.4. 184

Once the infrastructure was proven to be scalable and stable, we also migrated 185
analysis queues to Harvester. Analysis jobs represent less than 20% of the grid slots, but 186
they are short and run on a single core. From a Harvester load point of view, they are 187
heavier and require a much higher worker submission rate. 188

5 Results 189
Harvester is a project that took 2 years from initial discussion to full roll out. It is 190
contributing to a better usage of the ATLAS Grid. During the roll out of Harvester, we 191
observed a significant usage of job slots. While there are multiple potential contributions 192
happening in parallel (e.g. 3-4% of pledge increase or increased usage of the ATLAS Tier 193
0), we believe that Harvester has made a significant contribution to the increase for two 194
reasons: 195

• Harvester is more aggressive than previous Pilot factories in worker submission 196
and competes better on shared sites across multiple experiments. 197

• Through the queue unification and the pull UPS submission, the worker 198
submission is also more intelligent. It avoids uninformed competition between 199
ATLAS queues at the same site and follows better the ATLAS job priorities. 200

 201

Fig. 3. Running job slots on Grid resources before and after the migration to Harvester 202
Unified queues for production are working very well and we are currently working on 203
further unifying production and analysis queues, so that a standard Grid site only needs to 204
provide one queue for all job types. 205
 Lastly, we want to enhance automation of issues on the Grid to reduce the need of 206
human operational effort. 207

Acknowledgements 208
This research was enabled in part by support provided by National Science Foundation 209
(www.nsf.gov) and US Department of Energy (www.energy.gov/). 210

References 211
1. LHC Computing Grid: Technical Design Report, document LCG-TDR-001, CERN-212

LHCC-2005-024 (The LCG TDR Editorial Board) (2005) 213
2. T. Maeno et al. J. Phys. Conf. Ser. 898 052002 (2017) 214
3. ATLAS Collaboration 2008 The ATLAS Experiment at the CERN Large Hadron 215

Collider J. Inst. 3 S08003 216
4. P. Nilsson et al. J. Phys. Conf. Ser. 513 032071 (2014) 217
5. uWSGI https://uwsgi-docs.readthedocs.io/en/latest/ 218
6. HTCondor https://research.cs.wisc.edu/htcondor/ 219
7. ARC CE http://www.nordugrid.org/arc/ce/ 220
8. Google Compute Engine https://cloud.google.com/compute/ 221
9. Kubernetes https://kubernetes.io/ 222
10. SAGA https://saga-python.readthedocs.io/en/latest/ 223
11. PBS https://www.nas.nasa.gov/hecc/support/kb/121/ 224
12. Cobalt https://trac.mcs.anl.gov/projects/cobalt 225
13. Slurm https://www.slurm.schedmd.com/ 226
14. F. Barreiro Megino et al. EPJ Web Conf., 214 (2019) 03025 227

15. P. Saiz et al. EPJ Web Conf., (to be published) 228
16. R. Aparicio et al. J. Phys. Conf. Ser. 664 052021 (2015) 229
17. A. Anisenkov et al. J. Phys. Conf. Ser. 664 062001 (2015) 230

