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Abstract. ATLAS Computing Management has identified the migration 12 
of all computing resources to Harvester, PanDA’s new workload 13 
submission engine, as a critical milestone for Run 3 and 4. This 14 
contribution will focus on the Grid migration to Harvester. We have built a 15 
redundant architecture based on CERN IT’s common offerings (e.g. 16 
Openstack Virtual Machines and Database on Demand) to run the 17 
necessary Harvester and HTCondor services, capable of sustaining the load 18 
of O(1M) workers on the grid per day. We have reviewed the ATLAS Grid 19 
region by region and moved as much possible away from blind worker 20 
submission, where multiple queues (e.g. single core, multi core, high 21 
memory) compete for resources on a site. Instead we have migrated 22 
towards more intelligent models that use information and priorities from 23 
the central PanDA workload management system and stream the right 24 
number of workers of each category to a unified queue while keeping late 25 
binding to the jobs. We will also describe our enhanced monitoring and 26 
analytics framework. Worker and job information is synchronized with 27 
minimal delays to a CERN IT provided ElasticSearch repository, where we 28 
can interact with dashboards to follow submission progress, discover site 29 
issues (e.g. broken Compute Elements) or spot empty workers. The result 30 
is a much more efficient usage of the Grid resources with smart, built-in 31 
monitoring of resources. 32 
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1 Introduction  35 
The Worldwide LHC Computing Grid (WLCG) [1] is a highly heterogeneous federation of 36 
computing sites with different middleware and increasingly special resources, such as 37 
Cloud or High Performance Computing (HPC) resources. PanDA [2] is the Workload 38 
Management System for ATLAS [3], managing all production and user jobs across the 39 
WLCG centers associated with the experiment. In order to exploit resources, PanDA is 40 
based on the Pilot paradigm [4], where Pilot jobs are submitted to the batch systems at sites. 41 
The Pilots retrieve the real payload from PanDA server and execute it.  42 

Over the years numerous Pilot submission systems have been developed, frequently 43 
specializing on a certain subset of resources and having independent code bases. The 44 
Harvester project was born as an attempt to provide a universal Pilot submission system. At 45 
the same time, in the case of Grid resources, some improvements were needed to increase 46 
the stability and usage efficiency through a tighter integration with the PanDA Workload 47 
Management System allowing a more informed decision taking. 48 

This contribution will focus on core Harvester design decisions and other significant 49 
aspects like new submission modes and monitoring. We will also show the process and 50 
results of migrating all Grid resources to Harvester. 51 

2 Harvester design decisions  52 

2.1 Lightweight vs High Performance execution modes 53 
In order to be a universal service for any type of resource, Harvester needs to provide 54 
certain flexibility in terms of resource consumption and dependencies. In the case of HPCs, 55 
Harvester frequently needs to run on edge nodes with strict restrictions on installation and 56 
memory/CPU footprint of the application. In this case Harvester provides a lightweight 57 
mode, using a SQLite database and limiting the number of internally managed threads. 58 

On the contrary for the Grid, central Harvester instances manage very large, costly 59 
infrastructures that need to be kept fully utilized. There are no important installation 60 
restrictions and it is preferable to host high performance services. In this case, Harvester 61 
typically uses a MySQL/MariaDB database and multiple Harvester processes can be started 62 
through frameworks like uWSGI [5]. 63 

2.2 Fast integration of new resources 64 
To reduce the lead time until a new resource is exploited successfully, the Harvester code 65 
follows a plug-in approach: the code is split into a common core and a set of specific plug-66 
ins that can be configured for each resource. Typically, new resources only require the 67 
implementation of resource-specific libraries for submission, monitoring and cleaning up 68 
workers that have finished. For most of the cases, these are python modules with lengths of 69 
a few hundred lines of code.  70 

Up to date, plug-ins have been developed for HTCondor [6], ARC CE [7], Google 71 
Compute Engine [8], Kubernetes [9], SAGA [10], PBS [11], Cobalt [12] and Slurm [13]. 72 

Data management plugins can be also developed to handle input and output files. This 73 
is often required for HPCs, where the worker nodes have no external connectivity. However 74 
this is generally not required for the Grid, since the Pilot handles the data management. 75 

 76 
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2.3 Queue unification 78 
ATLAS submits Pilots specifying the number of cores and memory for the jobs. In 79 

the past, sites provided multiple separate queues per job type: 80 
• Analysis: usually single core payloads running with a non-production proxy security 81 

role 82 
• Production: several different payloads summarized in Table 1. 83 

Table 1.  Requirements for the various production workloads 84 
 CPUs Memory 

Single core 1 2 GB 

Multi core Depends on site, usually 8 2 GB/core 

Single core, high memory 1 Depends on site, >2 GB 

Multi core, high memory Depends on site, usually 8 Depends on site, >2 GB/core 

 85 
An average site for ATLAS would have an Analysis queue, a single core and a multi-core 86 
production queue. Larger sites would also provide high memory queues. Pilots would be 87 
submitted to these queues independently, causing random competition for the slots and 88 
making it impossible to establish any control over the ratios. 89 

In order to follow the Global Shares [14] priorities of ATLAS, it is more desirable to 90 
unify all queues at a site into one single queue that can accept Pilots with different sizes. 91 
These unified queues can be managed using either the Pull mode or the new Pull UPS mode 92 
(see next subsection).  93 

2.4 Submission modes supported by Harvester 94 
Harvester supports the classical push and pull workflows, and has extended the pull 95 
workflow for unified queues as follows: 96 
• Push (early binding): the worker submitted to the batch queue is already assigned to a 97 

particular job and requests the CPU, memory, and potentially other requirements, of 98 
the specific job. The push workflow works natively with unified queues. The 99 
disadvantage is the early binding: once the worker is submitted, you can’t control the 100 
queue time. If the queue time is long, a high priority job is stuck in the queue. Also, 101 
during the queueing time, a more important job might have appeared and needs to wait 102 
until the queue of previously submitted jobs has cleared. 103 

• Pull (late binding): To circumvent the drawbacks of the push workflow, the pull 104 
workflow submits workers without any pre-assigned job. The advantage is that the 105 
WMS can choose the most important job right at the time the worker starts running. 106 
However, all workers submitted to the queue are the same and thus this mode does not 107 
support natively on unified queues. A dumb pilot submitter and multiple queues with 108 
different requirements on the same site causes competition between them and ATLAS 109 
can’t control the ratio of workers across the queues. 110 

• Pull UPS (Unified Pilot Streaming): This mode is an extension of the traditional pull 111 
mode to support unified queues. All types of jobs are queued together in the same 112 
queue and it’s the WMS system deciding the fraction of workers of each type to 113 
submit, depending on the global priorities. The WMS decision is published to 114 
Harvester as a command. 115 
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3 Harvester monitoring 119 

3.1 Worker monitoring 120 
Harvester reports the worker information up to the WMS, in our case PanDA. PanDA 121 
stores the worker information from the different Harvesters in one combined central Oracle 122 
table and also mirrors it to an ElasticSearch repository managed by CERN IT [15]. Our 123 
monitoring of choice follows the general trend to build dashboards on top of ElasticSearch, 124 
because of its speed and flexibility. We have built dashboards in Kibana for expert users 125 
and more user-friendly dashboards in Grafana for widespread use by site admins and 126 
shifters.  127 

The dashboards allow the user to interact with the Harvester data at a detailed worker 128 
level and at high level overviews:  129 
• The dashboards show a table with detailed worker information, which provide links to 130 

the logs and to the job submission file, to provide easy debugging of worker failures. 131 
• The dashboards also provide several plots to see the submission evolution broken down 132 

by different criteria (Harvester instance, resource type, state, etc.). There are also plots 133 
to see the worker distribution across the Computing Elements of a site. 134 

3.2 Service monitoring 135 
Our service monitoring collects important information about the Harvester instances: 136 

• Disk, CPU and memory usage 137 
• Worker submission, update and completion rates 138 
These metrics allow to easily identify when an instance is in trouble or misbehaving. 139 

We have an alerting system in place that sends a mail to the central Harvester team in case 140 
a metric has exceeded a threshold. The alerting system has proven very useful and warns us 141 
quickly about issues. These alerting systems are critical in times of low operational 142 
manpower and shifters in ATLAS. 143 

3.2 Site monitoring 144 
We are also implementing monitoring to identify broken sites. There are views in place 145 
grouping broken sites and broken Computing Elements, based on high ratios of workers in 146 
bad states (failed or cancelled submission). We show also the error messages happening on 147 
those sites. 148 

We are working on a monitoring to identify inactive sites, where the submission rate 149 
is lower than what would be expected. There can be different reasons for this, including 150 
misbehavior of Harvester submission rate calculation for the site. In the future we would 151 
like to automate actions, like issuing a reset of the worker submission calculation or 152 
submitting tickets to the site. 153 

4 Migration of the Grid to Harvester 154 



 

 

4.1 Central infrastructure 155 
 156 
We have setup a central high-performance Harvester infrastructure for the whole Grid 157 
migration. It is based on CERN IT provided services. The databases are hosted by the DB 158 
on Demand [16] project, while the servers are virtual machines from the OpenStack service. 159 
We have distributed the Grid sites across three Harvester instances: 160 

• Harvester A: US, CERN Tier 0, France, Russia, Canada, Netherlands 161 
• Harvester B: CERN, Germany, UK, Taiwan, Italy, Spain 162 
• Harvester ACTA: ARC CE sites 163 
Each instance consists of two active machines and one shared database for each 164 

instance. The two machines provide redundancy and are in different zones of the CERN 165 
computing center. If one machine is unavailable, the other machine can take over the full 166 
load. 167 
Non-ARC computing elements rely on HTCondor as interface. There are five load-168 
balanced HTCondor machines for the whole grid. 169 

 170 

Fig. 1. Harvester infrastructure overview 171 

4.2 Migration process 172 
The whole grid was migrated June 2018 to March 2019. During the migration process we 173 
watched stability and scaling of the services, improved the efficiency of the HTCondor 174 
interfaces, simplified the configuration of queues through the ATLAS Grid Information 175 
System (AGIS) [2017] and improved some interactions with the database.  176 



 

 

 177 

Fig. 2. Overview of the Grid migration progress to Harvester, in number of workers. This histogram 178 
is extracted from our Harvester worker monitoring. 179 

During the first period we migrated production queues to Harvester. Although 180 
production jobs occupy the better part of the grid slots, they are rather easy to handle from a 181 
Harvester load point of view: they run for multiple hours and typically occupy multiple 182 
cores. During the migration a major effort was devoted to unify production queues to the 183 
pull UPS mode explained in section 2.4. 184 

Once the infrastructure was proven to be scalable and stable, we also migrated 185 
analysis queues to Harvester. Analysis jobs represent less than 20% of the grid slots, but 186 
they are short and run on a single core. From a Harvester load point of view, they are 187 
heavier and require a much higher worker submission rate. 188 

5 Results 189 
Harvester is a project that took 2 years from initial discussion to full roll out. It is 190 
contributing to a better usage of the ATLAS Grid. During the roll out of Harvester, we 191 
observed a significant usage of job slots. While there are multiple potential contributions 192 
happening in parallel (e.g. 3-4% of pledge increase or increased usage of the ATLAS Tier 193 
0), we believe that Harvester has made a significant contribution to the increase for two 194 
reasons: 195 

• Harvester is more aggressive than previous Pilot factories in worker submission 196 
and competes better on shared sites across multiple experiments. 197 

• Through the queue unification and the pull UPS submission, the worker 198 
submission is also more intelligent. It avoids uninformed competition between 199 
ATLAS queues at the same site and follows better the ATLAS job priorities.  200 



 

 

 201 

Fig. 3. Running job slots on Grid resources before and after the migration to Harvester 202 
Unified queues for production are working very well and we are currently working on 203 
further unifying production and analysis queues, so that a standard Grid site only needs to 204 
provide one queue for all job types.  205 
 Lastly, we want to enhance automation of issues on the Grid to reduce the need of 206 
human operational effort. 207 
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